

 AS-2
 Implementation

Name: (Deon) Guo Tian
ID: 3309011
UPI: tguo002

© EDIS Technologies Limited 2006

Abstract

Applicability Statement 2 (AS2) is an Internet Engineering Task Force (IETF) standard for
the secure exchange of structured business data using HTTP transfer protocol. This
project was an implementation of AS2 using the iterative and prototyping methodologies.
AS2 was implemented in C#, using a Microsoft Visual Studio 2005 development
environment.

The first phase of the project was to implement a program that could send and receive
messages, construct messages, and query and update an underlying database according
to the AS2 protocol. A standard .net application was used to send messages using the
HTTP post method, and an .ashx file was used to receive them. The underlying database
and database layer were implemented with Pervasive RDBMS and then migrated to SQL
2000. IIS 5.3 server was used for the server-client mechanism.

The second phase was to add security features in the AS2 protocol, the most important
being digital signature and encryption. A simple, non-AS2 program with digital signature
and encryption was first developed using a public key cryptography. The keys were stored
as X509 certificates in Windows certificate stores. The program was then integrated into
the basic AS2 program from the first phase.

AS2 Server and Client implementation 2

1. BACKGROUND ...4
1.1 WHO IS AARN ...4
1.2 BRIEF INTRODUCTION TO EDIS E-COMMERCE TRADING SYSTEM..5
1.3 INITIATIVE FOR AARN...6

2. INTRODUCTION TO AS2..7
2.1 OVERALL OPERATION ..7

2.1.1 The Secure Transmission Loop..9
2.2 ASSUMPTIONS...9

2.2.1 EDI/EC Process Assumptions..10
2.2.2 Flexibility Assumptions..10
2.2.3 Permutation Summary ...10

2.3 STRUCTURE OF AN AS2 MESSAGE..12
2.3.1 Headers..12
2.3.2 Message body...14

2.4 HTTP CONSIDERATIONS ...14
2.4.1 HTTP Response Status Codes..14
2.4.2 HTTP Error Recovery..14

2.5 IMPORTANT SECURITY FEATURES OF AS2..15
2.5.1 Public Key Cryptography and Encryption...15
2.5.2 Public Key Cryptography and Digital Signature...17
2.5.3 Digital Certificate ..18
2.5.4 Certificate Authority of AS2...19
2.5.5 In the process of one AS2 message exchange: ...20

2.6 STRUCTURE AND PROCESSING OF AN MDN MESSAGE ...21
2.6.1 Required supports ..21
2.6.2 Usage of the signed receipt..21
2.6.3 Processes on receiving an encrypted message...21
2.6.4 Usage of Signed MDN for the Sender of the EDI Interchange ..23
2.6.5 Synchronous and Asynchronous MDN ..24

3. THE AS2 PROJECT ..26
3.1 PROJECT MANAGEMENT..26
3.2 SYSTEM ARCHITECTURE...27

3.2.1 NetLib ..27
3.2.2 AS2 Sender...28
3.2.3 AS2 Handler...30
3.2.4 Core Classes ..31

3.3 IMPLEMENTATION OF SECURITY FEATURES ..34
4. PROBLEMS & SOLUTIONS ...35

4.1 The decision of redesigning of the original program..35
4.2 Sending different types of messages..37
4.3Detach Signature from Message Data and Verify the Separated Signature ..38
4.4 The problem with IIS Server ...40

5. CONCLUSION ...41
6. NEXT STEP ..42
7. ACKNOWLEDGEMENT..42
8. BIBLIOGRAPHY...42
9. APPENDIX -- TERMS...43

AS2 Server and Client implementation 3

1. Background

1.1 Who is AARN
AARN innovation is a software research and development organization. It provides
complete, end-to-end, manufacturing and distribution e-commerce solutions that include
both:

• Web-enabled applications that only require the user to have access to a
 web-browser and a connection to the Internet. The applications below are few
examples of Web-enabled applications.

AS2 Server and Client implementation 4

• Integrated translators that move information into and out of manufacturing and
financial systems. EDIS for Windows is one of them.

AARN is the sponsor company for this AS2 project and EDIS for windows is one of
AARN’s core e-commerce products.

1.2 Brief Introduction to EDIS E-commerce Trading System
Computers have been used in the business world since the 1950’s. In the 1990’s, the
focus shifted from enterprise computing to the internet. Recently, the idea of a computer-
supported business between businesses (B2B) has attracted fresh interest.

EDIS for Windows is a message exchange system. Figure 3.1 below shows how EDIS
works in the business world.

AS2 Server and Client implementation 5

ERP

ERPBusiness EDIS

 Figure EDIS in business world

From the figure above, Business A and Business B both have their own ERP (enterprise
resource planning) systems. The two ERP systems are different in most cases. EDIS sits
in between the two ERP systems and handles the data exchange.

The figure below shows the structure of the EDIS for Windows systems. It consists of
different modules, some of which form groups to perform discrete aspects of the system’s
overall functionality.

 Figure Overview of the EDIS for Windows system [1]

A

Transport
Protocol

Transport
Protocol

Incoming
Message

Outgoing
Message

Business
B

The modules on the right hand side translate the messages and handle the data flow
between the message queue and the ERP system. At the centre of this system is the
Message Queue module. The modules on the left hand side (that are highlighted) handle
incoming and outgoing messages and they are what this project is about: retrieve data
from the database, format the message, securely connect to the server, send outgoing
message, process incoming message, etc.

1.3 Initiative for AARN
AS2 presents both a major opportunity as well as a competitive risk to AARN Innovation.
With the current global focus on e-commerce security and scalability, the traditional VAN
model of e-business is being challenged. Worldwide, corporations are adopting
communications protocols that utilize Digital Certificates to enhance security. They are
also switching to a peer-to-peer network model that more closely emulates the Internet
architecture than the traditional, proprietary, VAN communications platform.

Today, leading retailers and manufacturers are realizing the benefits of AS2. This list of
companies includes: Wal-Mart, Shaw's, Target, Lowe's, Wegmans, Procter & Gamble,
Hershey Foods, Campbell's and many others. Many of these organizations are actively
requesting that all of their supply chain partners utilize this technology to communicate
across the business community.

 Figure - companies using AS2 [2]

From November 2004 through to February 2005, AARN was privileged to be able to
facilitate a research and development project at the University of Auckland. The three
students produced development reports that provided valuable input into the decision-
making process. This has resulted in AARN being able to determine that developing the
software in-house is practical and that gaining an international AS2-compliance is
achievable. [3]

AS2 Server and Client implementation 6

2. Introduction to AS2
AS2 is Applicability Statement 2 for short. It describes how to exchange structured
business data securely using the HTTP transfer protocol. Structured business data may
be XML or other structured data formats. The data is packaged using standard MIME
structures. Authentication and data confidentiality are obtained by using Cryptographic
Message Syntax with S/MIME security body parts. Authenticated acknowledgements
make use of multipart/signed Message Disposition Notification (MDN) responses to the
original HTTP message. This applicability statement is informally referred to as "AS2"
because it is the second applicability statement, produced after "AS1".

In this chapter AS2 is discussed in detail. There are mainly 5 aspects, that is: The overall
operation of AS2, the assumptions (conditions) to be made for AS2, the structure of an
AS2 message and MDN.

2.1 Overall Operation
The image below shows how AS2 works in a typical data exchange between two trading
partners.

 Figure – data exchange between trading partners [2]

AS2 Server and Client implementation 7

As shown in the figure above, there are usually 8 steps for one data exchange

Step Task Location

1

Retailer’s ERP system
generates PO (purchase
order). The document is
then mapped to EDI and
sent to AS2 server

Retailer side

2

Retailer’s AS2 server
encrypts, signs the PO and
sends to the Supplier via
HTTP

Retailer side – Internet

3

Supplier’s AS2 server
receives the AS2 message
from the Retailer and sends
Message Disposition
Notification (MDN) back to
let the Retailer know that the
PO message has been
received.

Supplier side -- Internet

4

Supplier’s AS2 server
uploads PO into Supplier’s
ERP (Enterprise resource
planning) system.

Supplier side

5

Supplier’s ERP system
generates functional
acknowledgement (997) and
sends to the Supplier’s AS2
server.

Supplier side

6
Supplier’s AS2 server
encrypts, signs and forwards
the 997 to Retail via HTTP

Supplier side -- Internet

7
Retailer’s AS2 server
reconciles the 997 with PO
and uploads file to ERP

Retailer side

8

Retailer’s AS2 server
decrypts 997 and sends
over MDN to let Supplier
know that 997 message has
been received.

An HTTP POST operation is used to send appropriately packaged EDI, XML, or other
business data. The Request-URI identifies a process for unpacking and handling the
message data and for generating a reply for the client that contains a message disposition
acknowledgement (MDN), either signed or unsigned. The MDN is either returned in the
HTTP response message body or by a new HTTP POST operation to a URL for the
original sender.

AS2 Server and Client implementation 8

This request/reply transactional interchange can provide secure, reliable, and
authenticated transport for EDI or other business data using HTTP as a transfer protocol.

The security protocols and structures used also support auditable records of these
document data transmissions, acknowledgements, and authentication.

2.1.1 The Secure Transmission Loop
In the transmission process, one organization sends a signed and encrypted EDI/EC
(Electronic Data Interchange/Electronic Commerce) interchange to another organization
and requests a signed receipt, and later the receiving organization sends this signed
receipt back to the sending organization. Such a process is called “Secure Transmission
Loop” and its main steps are:

Sender

HTTP request: S/MIME message

HTTP response: S/MIME MDN

Receiver

• The organization sending EDI/EC data signs and encrypts the data using S/MIME. In

addition, the message will request that a signed receipt be returned to the sender. To
support NRR, the original sender retains records of the message, message-ID, and
digest (MIC) value.

• The receiving organization decrypts the message and verifies the signature, resulting

in verified integrity of the data and authenticity of the sender.

• The receiving organization then returns a signed receipt using the HTTP reply body or

a separate HTTP POST operation to the sending organization in the form of a signed
message disposition notification. This signed receipt will contain the hash of the
received message, allowing the original sender to have evidence that the received
message was authenticated and/or decrypted properly by the receiver.

The above describes functionality that, if implemented, will satisfy all security
requirements and implement non-repudiation of receipt for the exchange.

2.2 Assumptions
There were some assumptions made when AS2 was designed. These assumptions must
be satisfied in implementation. The assumptions are mainly made in the aspect of EDI/EC
Process and Flexibility.

AS2 Server and Client implementation 9

2.2.1 EDI/EC Process Assumptions
• Encrypted object is an EDI/EC Interchange.
AS2 assumes that a typical EDI/EC interchange is the lowest-level object that will be
subject to security services.

• EDI envelope headers are encrypted.
Congruent with the above statement, EDI envelope headers are NOT visible in the MIME
package.

In many cases, some envelope information is set to be visible for Optimization purpose. In
commercial EDI networks (Value Added Networks or VANs), the visible information of the
envelope helps to optimize routing and makes it more efficient. However, AS2 does not
support for this optimization. This means EDI envelope headers are not visible in the
MIME package and no exception is allowwed. [4]

2.2.2 Flexibility Assumptions
• Encrypted or Unencrypted Data
AS2 allows for EDI/EC message exchange in which the EDI/EC data can be either
encrypted or not.

• Signed or Unsigned Data
AS2 allows for EDI/EC message exchange with or without digital signature of the original
EDI transmission.

• Optional Use of Receipt
AS2 allows for EDI/EC message transmission with or without a request for receipt
notification. A signed receipt notification is requested; however, a MIC value is
REQUIRED as part of the returned receipt, except when a severe error condition prevents
computation of the digest value. In the exceptional case, a signed receipt should be
returned with an error message that effectively explains why the MIC is absent.

• Use of Synchronous or Asynchronous Receipts
In addition to a receipt request, AS2 allows the specification of the type of receipt that
should be returned. It supports synchronous or asynchronous receipts in the MDN format.

• Hash Function, Message Digest Choices
When a signature is used, it is RECOMMENDED that the SHA-1 hash algorithm be used
for all outgoing messages, and that both MD5 and SHA-1 be supported for incoming
messages. [4]

2.2.3 Permutation Summary
From the assumptions stated above, an AS2 transmission can be permuted with the 4
optional conditions: The message is signed or not, the message is encrypted or not,
requests an MDN or not and the requested MDN is signed or not.

In summary, the following twelve security permutations are possible in any given trading
relationship:

AS2 Server and Client implementation 10

Case Signed
message

Encrypted
message Request MDN Signed MDN

1 No No No -

2 No No Yes No

3 No No Yes Yes

4 No Yes No -
5 No Yes Yes No
6 No Yes Yes Yes
7 Yes No No -
8 Yes No Yes No
9 Yes No Yes Yes
10 Yes Yes No -
11 Yes Yes Yes No
12 Yes Yes Yes Yes

Cases:
1. Sender sends un-encrypted data and does NOT request a receipt.

2. Sender sends un-encrypted data and requests an unsigned receipt. Receiver sends
back the unsigned receipt.

3. Sender sends un-encrypted data and requests a signed receipt. Receiver sends back
the signed receipt.

4. Sender sends encrypted data and does NOT request a receipt.

5. Sender sends encrypted data and requests an unsigned receipt. Receiver sends back
the unsigned receipt.

6. Sender sends encrypted data and requests a signed receipt. Receiver sends back the
signed receipt.

7. Sender sends signed data and does NOT request a signed or unsigned receipt.

8. Sender sends signed data and requests an unsigned receipt. Receiver sends back
the unsigned receipt.

9. Sender sends signed data and requests a signed receipt. Receiver sends back the
signed receipt.

10. Sender sends encrypted and signed data and does NOT request a signed or unsigned
receipt.

11. Sender sends encrypted and signed data and requests an unsigned receipt.
Receiver sends back the unsigned receipt.

AS2 Server and Client implementation 11

12. Sender sends encrypted and signed data and requests a signed receipt. Receiver
sends back the signed receipt.

Users can choose any of the twelve possibilities, but only the last case (12), when a
signed receipt is requested, offers the whole suite of security features described in Section
"The Secure Transmission Loop".

Additionally, the receipts discussed above may be either synchronous or asynchronous
depending on the type requested. The use of either the synchronous or asynchronous
receipts does not change the nature of the secure transmission loop in support of NRR.

2.3 Structure of an AS2 Message
The basic structure of an AS2 message consists of MIME format inside an HTTP
message with a few additional specific AS2 headers.

2.3.1 Headers
Internet EDI MIME Message types and Content-type header

The EDI MIME message can be any of the following types:
• No encryption, no signature
• No encryption, signature
• Encryption, no signature
• Encryption, signature
• MDN over HTTP, no signature
• MDN over HTTP, signature
• MDN over SMTP, no signature
• MDN over SMTP, signature

Although all MIME content types should be supported, the following
MIME content types are essential and must be supported:

Case Content-type
1 multipart/signed
2 multipart/report
3 message/disposition-notification
4 application/PKCS7-signature
5 application/PKCS7-mime
6 application/EDI-X12
7 application/EDIFACT
8 application/edi-consent
9 application/XML

AS2 Server and Client implementation 12

Http headers

• Final Recipient and Original Recipient
The final and original recipient values SHOULD be the same value. These values MUST
NOT be aliases or mailing lists.

• Message-Id and Original-Message-Id
Message-Id and Original-Message-Id is formatted as "<" id-left "@" id-right ">"

Message-Id length is a maximum of 998 characters. For maximum backward
compatibility, Message-Id length SHOULD be 255 characters or less. Message-Id
SHOULD be globally unique, and id-right SHOULD be something unique to the sending
host environment (e.g., a host name).

When sending a message, always include the angle brackets. Angle brackets are not
part of the Message-Id value. For maximum backward compatibility, when receiving a
message, do not check for angle brackets. When creating the Original-Message-Id
header in an MDN, always use the exact syntax as received on the original message;
don't strip or add angle brackets.

• Host Header
The host request header field MUST be included in the POST request made when
sending business data. This field is intended to allow one server IP address to service
multiple hostnames, and potentially to conserve IP addresses.

 Content-Transfer-Encoding Not Used in HTTP Transport
HTTP can handle binary data and so there is no need to use the content transfer
encodings of MIME. However, a content transfer encoding value of binary or 8-bit is
permissible but not required. The absence of this header MUST NOT result in transaction
failure. Content transfer encoding of MIME body parts within the AS2 message body is
also allowed. [4]

Additional AS2-Specific HTTP Headers
The following headers are to be included in all AS2 messages and all
AS2 MDNs, except for asynchronous MDNs that are sent using SMTP and
that follow the AS1 semantics.

• AS2 Version Header
To promote backward compatibility, AS2 includes a version header:

AS2-Version: 1.0
Used in all implementations of this specification. 1.x will be interpreted as 1.0 by all
implementations with the "AS2 Version: 1.0" header. That is, only the most significant digit
is used as the version identifier for those not implementing additional non-AS2-specified
functionality. "AS2-Version: 1.0 through 1.9" may be used. All implementations MUST
interpret "1.0 through 1.9" as implementing this specification However, an implementation
MAY extend this specification with additional functionality by specifying versions 1.1
through 1.9. If this mechanism is used, the additional functionality must be completely
transparent to implementations with the "AS2-Version: 1.0" designation.

AS2 Server and Client implementation 13

AS2-Version: 1.1
Designates those implementations that support compression.

Receiving systems MUST NOT fail due to the absence of the AS2-Version header. Its
absence would indicate that the message is from an implementation based on a previous
version of this specification.

• AS2 System Identifiers
To aid the receiving system in identifying the sending system,
AS2-From and AS2-To headers are used.

 AS2-From: < AS2-name >
 AS2-To: < AS2-name >

These AS2 headers contain textual values, identifying the sender/receiver of a data
exchange. Their values may be company specific, such as Data Universal Numbering
System (DUNS) numbers, or they may be simply identification strings agreed upon
between the trading partners.

There is no required response to a client request containing invalid or unknown AS2-From
or AS2-To header values. The receiving AS2 system MAY return an unsigned MDN with
an explanation of the error, if the sending system requested an MDN.

2.3.2 Message body
The message body is just stored as a string at this stage.

2.4 HTTP considerations
AS2 operations are all based on HTTP protocol so there are many HTTP issues that we
must consider. A few of the most important HTTP considerations are listed below:

2.4.1 HTTP Response Status Codes
The status codes return status concerning HTTP operations. For example, the status code
401, together with the WWW-Authenticate header, is used to challenge the client to repeat
the request with an Authorization header.

For errors in the request-URI, 400 ("Bad Request"), 404 ("Not Found"), and similar codes
are appropriate status codes. A careful examination of these codes and their semantics
should be made before implementing any retry functionality. Retries SHOULD NOT be
made if the error is not transient or if retries are explicitly discouraged. [4]

2.4.2 HTTP Error Recovery
If the HTTP client fails to read the HTTP server response data, the POST operation with
identical content, including same Message-ID, SHOULD be repeated, if the condition is
transient.

AS2 Server and Client implementation 14

The Message-ID on a POST operation can be reused if and only if all of the content
(including the original Date) is identical.

Details of the retry process (including time intervals to pause, number of retries to attempt,
and timeouts for retrying) are implementation dependent. These settings are selected as
part of the trading partner agreement.

Servers SHOULD be prepared to receive a POST with a repeated Message-ID. The
MIME reply body previously sent SHOULD be resent, including the MDN and other MIME
parts. [4]

2.5 Important Security Features of AS2
The most important Security features of AS2 are digital signature and encryption. Both of
them are implemented using the Public key cryptography.

2.5.1 Public Key Cryptography and Encryption
The Public-Private key algorithm requires a pair of keys: Public Key and the Private Key.
The private key is kept secret, while the public key may be widely distributed. In a sense,
one key "locks" a lock; while the other is required to unlock it. It should not be feasible to
deduce the private key of a pair given the public key, and in high quality algorithms no
such technique is known.

The simple example [5] demonstrates how public-private key algorithm works:

Sam has a pair of keys: The Public Key and the Private Key.

Sam

(Sam's public key)

(Sam's private key)

Sam's Co-workers:

Anyone can get Sam's Public
Key, but Sam keeps his Private
Key to himself

Pat Doug Susan

Sam's Public key is available to anyone who needs it, but he keeps his Private Key to
himself. Nobody else other than Sam himself has access to Sam’s Private Key. Keys are
used to encrypt information. Encrypting information means "scrambling it up", so that only

AS2 Server and Client implementation 15

a person with the appropriate key can make it readable again. For a pair of keys, if one
key is used to encrypt some data, the encrypted data then can only be decrypted by the
other of this pair.

Susan (shown below) can encrypt a message using Sam's Public Key. Sam uses his
Private Key to decrypt the message. Any of Sam's coworkers might have access to the
message Susan encrypted, but without Sam's Private Key, nobody can decrypt it.

"Sam, let's
meet secretly
at 7pm at the
Quad."

MIIBNwYJKoZIhvcN
AQcDoIIBKDCCASQ
CAQAxgckwgcYCAQ
AwLzAaMQswCQYD
VQQGEwJVUzELMA
kGA1UEAx……..

MIIBNwYJKoZIhvcN
AQcDoIIBKDCCASQ
CAQAxgckwgcYCAQ
AwLzAaMQswCQYD
VQQGEwJVUzELMA
kGA1UEAx……..

"Sam, let's
meet secretly
at 7pm at the
Quad."

Other people may find a way to see the message Susan sent to Sam:

MIIBNwYJKoZIhvcN
AQcDoIIBKDCCASQ
CAQAxgckwgcYCAQ
AwLzAaMQswCQYD
VQQGEwJVUzELMA
kGA1UEAx……..

But they cannot decrypt it without Sam’s Private Key.

AS2 Server and Client implementation 16

2.5.2 Public Key Cryptography and Digital Signature
With his private key, Sam can put digital signatures on documents and other data. A
digital signature is a "stamp" Sam places on the data which is unique to Sam, and is very
difficult to forge. In addition, the signature assures that any changes made to the data that
has been signed can not go undetected.

To sign a document, Sam's software will crunch down the data into just a few
lines by performing a hash. These few lines are called a message digest. (It is not
possible to change a message digest back into the original data from which it was
created.)

Sam then encrypts the message digest with his private key. The result is the digital
signature.

Finally, Sam appends the digital signature to document. All of the data that was hashed
has been signed.

Sam now passes the document on to Pat.

AS2 Server and Client implementation 17

First, Pat decrypts the signature (using Sam's public key) changing it back into a
message digest. If this worked, then it proves that Sam signed the document,

because only Sam has his private key. Pat then hashes the document data into a
message digest. If the message digest is the same as the message digest created
when the signature was decrypted, then Pat knows that the signed data has not
been changed.

We get two Message Digests: one is from decrypting the digital signature and the other is
from hashing the document data.

2.5.3 Digital Certificate

Doug wishes to deceive Pat. Doug makes sure that Pat receives a signed
message and a public key that appears to belong to Sam. Unbeknownst to Pat,
Doug deceitfully sent a key pair he created using Sam's name. Short of receiving
Sam's public key from him in person, how can Pat be sure that Sam's public key is
authentic?

It just so happens that Susan works at the company's certificate authority center. Susan
can create a digital certificate for Sam simply by signing Sam's public key as well as some
information about Sam.

Sam Info:
 Name
 Department
 Cubical Number

Certificate Info:
 Expiration Date
 Serial Number

Sam's Public Key:

Susan

Now Sam's co-workers can check Sam's trusted certificate to make sure that his public
key truly belongs to him. In fact, no one at Sam's company accepts a signature for which

AS2 Server and Client implementation 18

there does not exist a certificate generated by Susan. This gives Susan the power to
revoke signatures if private keys are compromised, or no longer needed. There are even
more widely accepted certificate authorities that certify Susan.

Let's say that Sam sends a signed document to Pat. To verify the signature on the
document, Pat's software first uses Susan's (the certificate authority's) public key to check
the signature on Sam's certificate. Successful de-encryption of the certificate proves that
Susan created it. After the certificate is de-encrypted, Pat's software can check if Sam is in
good standing with the certificate authority and that all of the certificate information
concerning Sam's identity has not been altered.
Pat's software then takes Sam's public key from the certificate and uses it to check Sam's
signature. If Sam's public key de-encrypts the signature successfully, then Pat is assured
that the signature was created using Sam's private key, for Susan has certified the
matching public key. And of course, if the signature is valid, then we know that Doug didn't
try to change the signed content.

2.5.4 Certificate Authority of AS2
Trading partners can self-certify each other if an agreed-upon certification authority is not
used. AS2 does not require the use of a certification authority. The use of a certification
authority is therefore optional.

In the case trading partners are Sam and Susan:
Certify each other’s public key

Sam

Now Susan’s public key is Certified by Sam’s private
key and no one can fake Sam’s public key.

Now Sam’s public key is Certified by Susan’s private
key and no one can fake Susan’s public key.

Susan

AS2 Server and Client implementation 19

2.5.5 In the process of one AS2 message exchange:

Assume Sam is the sender and Susan is the receiver of this exchange.
 Who Do Key used Comments
1

Certify Susan Sam’s
Private Key
Susan’s
Public Key

Sam uses his own Private Key to sign
on Susan’s Public Key along with
some information of Susan. This gives
a Digital Certificate for Susan

1

Certify Sam Susan’s
Private Key
Sam’s
Public Key

Sam uses his own Private Key to sign
on Susan’s Public Key along with
some information of Susan. This gives
a Digital Certificate for Susan

2

Encrypts the message
to be sent

Susan’s
Public Key

3

Use Hash fuction to get
the message
digest

 This message digest is used to form
the Digital signature

4

Encrypt the Message
Digest

Sam’s
Private Key

This creates the Digital signature

5

Attaches the Digital
signature to the
Message

6

Send over the Message

7

Verify Sam’s Certificate Susan’s
Public Key

Because Susan used her own Private
Key to sign on Sam’s Public Key

8

Decrypt the Digital
Signature

Sam’s
Public Key

This gives the Message Digest

9

Decrypt the Message
data

Sam’s
Public Key

This gives the “original” Message Data
but Susan still cannot make sure if the
message data is modified by someone
else in the middle of the transfer.

10

Perform Hash function
on Message data to get
the Message Digest

 This gives another Message Digest.
Compare this Message Digest with the
one got from step 8

11

If two Message Digests
are identical, it means
the message is from
Sam and has not been
modified

 Now Susan is certain that the
Decrypted message data is the original
message from Sam

11 If two Message Digests
are not identical, it
means the message is
modified by someone
else

Now Susan knows the Decrypted
message data cannot be trusted. It has
been modified by someone else.

AS2 Server and Client implementation 20

2.6 Structure and Processing of an MDN Message
In order to support non-repudiation of receipt, a signed receipt, based on digitally signing a
message disposition notification, is to be implemented by a receiving trading partner's UA.
The message disposition notification, specified by RFC 3798, is digitally signed by a
receiving trading partner as part of a multipart/signed MIME message. [4]

2.6.1 Required supports
The following support for signed receipts is REQUIRED:

Support needed for signed receipts

The ability to create a multipart/report; where the report-type = disposition-
notification.

1

The ability to calculate a message integrity check (MIC) on the received
message. The calculated MIC value will be returned to the sender of the
message inside the signed receipt.

2

The ability to create a multipart/signed content with the message disposition
notification as the first body part, and the signature as the second body part.

3

The ability to return the signed receipt to the sending trading partner. 4
The ability to return either a synchronous or an asynchronous receipt as the
sending party requests. 5

2.6.2 Usage of the signed receipt
The signed receipt is used to notify a sending trading partner that requested the signed
receipt that:

Usage of the Signed receipt

The receiving trading partner acknowledges receipt of the sent EC Interchange
 1

If the sent message was signed, then the receiving trading partner has
authenticated the sender of the EC Interchange. 2

If the sent message was signed, then the receiving trading partner has verified
the integrity of the sent EC Interchange. 3

2.6.3 Processes on receiving an encrypted message
Regardless of whether the EDI/EC Interchange was sent in S/MIME format, the receiving
trading partner's UA MUST provide the following basic processing:

AS2 Server and Client implementation 21

AS2 Server and Client implementation 22

 Receiver side1. Decrypt the encryption key

2. Use the key to decrypt the message

3. Authenticate signatures (3 steps: a, b, c)

4. Format MDN

5. Create multipart/signed MIME message

6. MDN as first part of the message

7. Digital signature as second part of the message

8. Format signature information

a. Decrypt MIC

b. Calculate MIC on
the signed contents

c. Extract the MIC
and compare
equality

Figure - Processes on receiving an encrypted message

1. If the sent EDI/EC Interchange is encrypted, then the encrypted symmetric key and
initialization vector (if applicable) is decrypted using the receiver's private key.

2. The decrypted symmetric encryption key is then used to decrypt the EDI/EC
Interchange.

3. The receiving trading partner authenticates signatures in a message using the sender's
public key. The authentication algorithm performs the following:

a. The message integrity check (MIC or Message Digest), is decrypted using the
sender's public key.

b. A MIC on the signed contents (the MIME header and encoded EDI object, as per

RFC 1767) in the message received is calculated using the same one-way hash
function that the sending trading partner used.

c. The MIC extracted from the message that was sent and the MIC calculated using

the same one-way hash function that the sending trading partner used are
compared for equality.

4. The receiving trading partner formats the MDN and sets the calculated MIC into the
"Received-content-MIC" extension field.

5. The receiving trading partner creates a multipart/signed MIME message.

6. The MDN is the first part of the multipart/signed message, and the digital signature is
created over this MDN, including its MIME headers.

7. The second part of the multipart/signed message contains the digital signature. The
"protocol" option specified in the second part of the multipart/signed is as follows:

 S/MIME: protocol = "application/pkcs-7-signature"

8. The signature information is formatted according to S/MIME specifications.

The EC Interchange and the MIME EDI content header can actually be part of a multi-part
MIME content-type. When the EDI Interchange is part of a multi-part MIME content-type,
the MIC MUST be calculated across the entire multi-part content, including the MIME
headers.

2.6.4 Usage of Signed MDN for the Sender of the EDI Interchange
The signed MDN, when received by the sender of the EDI Interchange, can be used by
the sender as follows: [4]

 Usage of Signed MDN for the sender

As an acknowledgement that the EDI Interchange sent was delivered and
acknowledged by the receiving trading partner. The receiver does this by
returning the original-message-id of the sent message in the MDN portion of
the signed receipt.

1

As an acknowledgement that the integrity of the EDI Interchange was verified
by the receiving trading partner. The receiver does this by returning the
calculated MIC of the received EC Interchange (and 1767 MIME headers) in
the "Received-content-MIC" field of the signed MDN.

2

3 As an acknowledgement that the receiving trading partner has authenticated

the sender of the EDI Interchange.

As a non-repudiation of receipt when the signed MDN is successfully verified
by the sender with the receiving trading partner's public key and the returned
MIC value inside the MDN is the same as the digest of the original message.

4

AS2 Server and Client implementation 23

2.6.5 Synchronous and Asynchronous MDN
The AS2-MDN exists in two varieties: synchronous and asynchronous.

The synchronous AS2-MDN is sent as an HTTP response to an HTTP POST or as an
HTTPS response to an HTTPS POST. This form of AS2-MDN is called synchronous
because the AS2-MDN is returned to the originator of the POST on the same TCP/IP
connection.

The asynchronous AS2-MDN is sent on a separate HTTP, HTTPS, or SMTP TCP/IP
connection. Logically, the asynchronous AS2-MDN is a response to an AS2 message.
However, at the transfer-protocol layer, assuming that no HTTP pipelining is utilized, the
asynchronous AS2-MDN is delivered on a unique TCP/IP connection, distinct from that
used to deliver the original AS2 message. When handling an asynchronous request, the
HTTP response MUST be sent back before the MDN is processed and sent on the
separate connection.

When an asynchronous AS2-MDN is requested by the sender of an AS2 message, the
synchronous HTTP or HTTPS response returned to the sender prior to terminating the
connection MUST be a transfer-layer response indicating the success or failure of the data
transfer. The format of such a synchronous response MAY be the same as that
response returned when no AS2-MDN is requested.

The following diagram illustrates the synchronous versus asynchronous varieties of AS2-
MDN delivery using HTTP:

Synchronous AS2-MDN
The sender sets up an HTTP connection to the receiver and sends over the AS2 message
as the HTTP request. After the receiver received the message it immediately sends back
an MDN in the same HTTP connection as the HTTP response. There is only one HTTP
connection. The figure below shows the Synchronous AS2-MDN exchanging process.

AS2 Server and Client implementation 24

 Figure - Synchronous MDN

Sender

(Peer 1)

Receiver

(Peer 2) Connection

Sends over AS2 Message
HTTP Request

Sends back AS2 MDN
HTTP Response

Asynchronous AS2-MDN
The sender sets up an HTTP connection and sends over the AS2 message as the HTTP
request. After the receiver received the message it however does not sends back the
MDN immediately. Instead, the receiver waits for a while and sets up another HTTP
connection to the sender and sends back the MDN as the new HTTP request. There are
two HTTP connections.

The figure below shows the Asynchronous AS2-MDN exchanging process.

Sender

(peer 1)

Receiver

(peer 2)

Connection 1

Connection 2

Sends over AS2 Message

Sends back AS2 MDN

HTTP Request

HTTP Request

HTTP Response

HTTP Response

 Figure Asynchronous MDN

* Note: An AS2-MDN may be directed to a host different from that of the sender of the
AS2 message. It may utilize a transfer protocol different from that used to send the
original AS2 message.

The advantage of the synchronous MDN is that it can provide the sender of the AS2
Message with a verifiable confirmation of message delivery within a synchronous logic
flow. However, if the message is relatively large, the time required to process this
message and to return an AS2-MDN to the sender on the same TCP/IP connection may
exceed the maximum configured time permitted for an IP connection.

The advantage of the asynchronous MDN is that it provides for the rapid return of a
transfer-layer response from the receiver, confirming the receipt of data, therefore not
requiring that a TCP/IP connection necessarily remain open for very long. However, this
design requires that the asynchronous AS2-MDN contain enough information to identify
the original message uniquely so that, when received by the AS2 Message originator, the
status of the original AS2 Message can be properly updated based on the contents of the
AS2-MDN. [4]

AS2 Server and Client implementation 25

3. The AS2 Project

3.1 Project management
At the Kick-Off meeting, I discussed the project outline with my industry mentor Mr Barry
Dowdeswell and my academic supervisors Dr Gerald Weber, Dr S Manoharan and Mr
Christof Lutteroth. We set up the strategy and steps for the project, including the
deliverable for the first half of the project.

Throughout the course of this project, I worked closely with Mr Lutteroth. We met weekly
to discuss my progress and plan the next steps. These weekly meetings were an essential
part of the project. They enabled me to receive feedback and also ensured that the
program met AARN’s expectations. It was at several of these meetings that we reviewed
the existing program and made some important decisions regarding the design and
implementation of the AS2 program, such as redesigning the architecture.

The project made use of the iterative development methodology. For the first iteration, we
developed an AS2 program with very basic functions, such as sending and receiving
messages. Then we refined the system architecture and added security features. Finally,
the database layer was implemented.

We also used the prototyping methodology to implement AS2. Before implementing the
security features, we developed a prototype which was a very basic windows form
program that could encrypt and sign messages. We then migrated the code from the
prototype to the AS2 program.

AS2 Server and Client implementation 26

https://webmail1.ec.auckland.ac.nz/horde/imp/message.php?index=80
https://webmail1.ec.auckland.ac.nz/horde/imp/message.php?index=80

3.2 System Architecture

AS2 Server and Client implementation 27

System Architecture

As shown in the diagram, the system contains 3 main parts: the AS2 Sender, which sends
out AS2 messages; the AS2 Handler, which receives and processes incoming AS2
messages and MDN; and a library called NetLib.

3.2.1 NetLib
This is the library of this program. Most of the business logic is implemented here. It
mainly contains 2 classes: AS2Message and MIMEMessage.

AS2Message class formats the message that is going to be sent, add proper headers to
the message and creates a MIMEMessage as body. AS2Message class has many
instance variables that holds the information of the message such as Signed, Encrypted
as well as the information of the sender and receiver such as SendFrom, SendTo, etc.
There are 2 different constructors for different use. The most important method of this
class is the Send() method, which sends over the formatted message via an HTTP Post
method. This method returns the corresponding HTTP response. There will be some
detailed introduction to this class in next section.

MIMEMessage class formats the message data of AS2.

uses

uses

uses

MDN

Message

 AS2 Sender NetLib
AS2 Message User Interface

 AS2Message()

 Send()

 AS2 Sender

 AS2 Handler
 AS2Message Receiver

 MDN Receiver

 MIMEPart{ }

 MIMEMultiPart{ }

constructs

 MIME

Messag

 The figure below shows the relationship between AS2Message and MIMEMessage:

 The AS2Message has mainly two parts:

AS2 Server and Client implementation 28

3.2.2 AS2 Sender
The sender has 2 layers: The user interface and the business logic that responds to the
user interface and sends out messages.

The user interface is not fully designed yet at this stage but there is a very simple interface
for testing purpose. It looks like this:

Figure - test UI

MIMEMessage

AS2 Message
 AS2 headers – Name Value collection

 Message data – a MIMEMessage. The

MIMEMessage object captures the actual
message data, wrap it with some MIME
headers to form the MIMEMessage
object. Then AS2Message takes the
MIMEMessage and wrap it up with AS2
headers.

AS2 headers

We have 2 layers here. The MIMEMessage layer
takes care of the security features of AS2 while
the AS2Message layer is responsible for the
connection and transfer.

The idea of the test program is to send different types of AS2 messages according to the
permutation table. The corresponding response is sent back and shown on the user
interface.

Controls:

Control Name Control Type Usage

txtMessageTo Text box The user types in message data

txtResponse Text box The HTTP response received

Specifies the identity of the partner that
sends the message txtFrom Text box

Specifies the identity of the partner that
the message is sent to txtTo Text box

Specifies whether the message is
signed or not ckbSigned Check box

Specifies whether the message is
encrypted or not ckbEncrypted Check box

Specifies whether a MDN is requested
or not ckbMDN Check box

Specifies whether a synchronous or
asynchronous MDN is requested grpMDN A group of radio buttons

btnSend Button Send the message

Process

The figure Test UI shows how the interface looks like initially. When sending a message,
the user types in the message data into the text box: txtMessageTo, check the
checkboxes indicating whether the message is signed, encrypted, request MDN, etc.
When the send button is clicked, the message is constructed and sent to the server over
an HTTP connection. The HTTP response is then shown in the text box: txtResponse.

There are 3 steps to send an AS2 message:
Construct an AS2Message object
An AS2Message object is constructed using the constructor AS2Message().

Set the value of the instance variables of the constructed AS2Message object.
The instance variables of the AS2Message object are set according to the controls. For
example, if the check box: ckbMDN is checked then the instance variable: Boolean MDN
is set to be true.

Send the message.
The instance method Send() is then called to send the AS2 message using an HTTP Post
method. The program will check if the AS2 message is to be signed and/or encrypted then
sign and/or encrypt the message before sending it.

AS2 Server and Client implementation 29

3.2.3 AS2 Handler
A .ashx file, which sits in the receiver’s IIS server, is used as the handler to process
received messages.

When a message is received
1. Construct an AS2Message object

When a message is received through HTTP request, an AS2Message object is
constructed by using the constructor AS2Message(HttpRequest request).

2. Extract information from HTTP request.
This is actually a part of constructing an AS2Message object using the HttpRequest
received. For example: AS2From = rs.Headers.Get("AS2-From");
AS2From is an instance variable of the AS2Message object. It is set by the value of
the “AS2-From” header in the HttpRequest. After the AS2 object is constructed, the
information then can be accessed through instance variables on the receiver side.

3. Check if the AS2 message is encrypted and/or signed. If so, verify the signature and

decrypt the message.

4. Save data into DB

The received message data and some information are then saved into the database

5. Construct and send MDN
If a MDN is requested, the handler will construct the MDN according to the requested
MDN type and then send back to the sender.

AS2 Server and Client implementation 30

3.2.4 Core Classes

 AS2Message

AS2 Server and Client implementation 31

This class is the core of the system. Both
Sender and Receiver need to construct an
AS2Message object for each data exchange.

The instance variables hold necessary
information of this AS2 message or the data
exchanging process.

There are 2 constructors:

• The one takes no parameter is used by
the Sender. The client has to set
instance variables of the AS2Message
object.

• The other one takes an HttpRequest

type parameter. This constructor is used
by the Receiver. It extracts information
from the HttpRequest, set instance
variables.

The instance method Send() basically sends
the constructed AS2Message over and HTTP
connection using a Post method. It also returns
the HttpResponse of the corresponding
HttpRequest.

AS2ToUri
AS2To
AS2From
AS2Version
UserAgent
MDNToUri
MDN
MDNSigned
MessageToSend
NonMIMEMessage
Signed
Encrypted
contentType
messageToSend
MessageID
AsynchronousMDNtoUri
Data

AS2Message()
AS2Message(HttpRequest rs)
string Send()
byte[] SignMsg(X509Certificate2)
byte[]EncryptMsg(X509Certificate2)

Figure - AS2Message class diagram

Instance Variables

Type Name Default Value Usage

 The uri of the receiver AS2ToUri Uri
 Sender’s identity AS2To String “Sender”
 Receiver’s identity AS2From String “Receiver”
 AS2 version number String AS2Version “1.1”

String UserAgent “EDISAS2 Client” User Agent name

 The uri for the MDN to
be sent to MDNToUri String
enum MDNType{
 None,
Synchronous,
Asynchronous

MDN MDNType MDNType.None }

 Whether the MDN is
signed MDNSigned Boolean False

 The MIME Message MIMEMessage MessageToSend Null
 The non-MIME

Message String NonMIMEMessage “Test Message”
 Whether the message

is signed Signed Boolean False
 Whether the message

is encrypted Encrypted Boolean False
 Http Content type

header contentType String “”
 The message’s

identity String MessageID “id”
The uri for the
asynchronous MDN to
be sent to

Uri AsynchronousMDNtoUri

AS2 Server and Client implementation 32

String Data “Empty”
The chunk of
message data

Constructors

Constructor Parameter Used by Note

AS2Message() None Sender

The sender needs to
set instance variables
specifically afterwards

The instance variables
are set automatically
by the constructor.

AS2Message(HttpRequest) HttpRequest Receiver

Instance methods

Instance methods Note

string Send() The core method of the class. It sets the values of the AS2
headers; checks if the message needs to be signed and/or
encrypted; sign/encrypt the message if needed; creates the
message body in MIME format then send the message using
an HTTP Post method and returns the response from the
receiver as a string.
This method uses the sender’s X509Certificate2 certificate
(private key) to create a digital signature for the message
data to be sent. It returns the digital signature in an array of
bytes.

byte[] SignMsg(
 X509Certificate2)

This method uses the receiver’s certificate (public key) to
encrypt the message. It returns the encrypted data in an
array of bytes.

byte[] EncryptMsg(
 X509Certificate2)

MIMEMessage, MIMEPart and MIMEMultiPart

AS2 Server and Client implementation 33

 The diagram to the left shows the structure of the
MIMEMessage class as well as the relationship
among MIMEMessage, MIMEPart and MIMEMultipart:

AS2Handler class:

AS2Handler
AS2Message as2Message
string response
string error

void ProcessRequest(
HttpContext context)

Byte[] DecryptMsg(
byte[] encodedEnvelopedCms)

bool VerifyMsg(
byte[] encodedSignedCms)

MIMEPart

 MIMEMessage
string encode()
MIMEPart decode(
 NameValueCollection,string)

• The MIMEMessage contains a MIMEPart, i.e:

there is an instance variable MIMEPart for a
MIMEMessage object.

• MIMEMultiPart extends MIMEPart.

• MIMEMultiPart contains an array of MIMEPart.

For a normal AS2 message, the message data is
stored in a MIMEPart. When the AS2 message is
signed, it has a digital signature and in this case we
need to use MIMEMultiPart. Inside of the
MIMEMultiPart, there is one MIMEPart holding the
message data and another MIMEPart holding the
digital signature.

extends

MIMEPart

MIMEMultiPart : MIMEPart

There are two instance methods in MIMEMessage
class: MIMEPart

1. string encode()
The sender encodes the MIMEMessage into a string ready
for sending.

 MIMEPart
2. MIMEMessage decode(NameValueCollection,string)
The receiver uses this method to decode the received string
into a MIMEMessage object.

The AS2Handler sits on the Receiver’s IIS
server. It receives AS2 messages,
processes them and sends back response.

When a message is received, AS2Handler
creates an AS2Message object, checks if the
message is signed and/or encrypted. If so,
use the corresponding method
DecryptMsg() or VerifyMsg() to process it.
After the message is verified and
decrypted, AS2Handler saves the received
message into the database and send back
response to the sender.

3.3 Implementation of Security features
In order to implement the digital signature and encryption, we mainly made use of the
System.Security.Cryptography.Pkcs namespace. This name space provides
programming elements for Public Key Cryptography Standards (PKCS), including
methods for signing data, exchanging keys, requesting certificates, public key encryption
and decryption, and other security functions.

Digital signature, the main functions are
1. Sign the message

First, place message in a contentInfo object. This is required to build a SignedCms
object, which is going to be used to store the signature.

AS2 Server and Client implementation 34

ContentInfo contentInfo = new ContentInfo(msg);

Instantiate SignedCms object with the ContentInfo above.

SignedCms signedCms = new SignedCms(contentInfo);

Then Formulate a CmsSigner object for the signer.

CmsSigner cmsSigner = new CmsSigner(signerCert);

Now we can sign the CMS/PKCS #7 message using the X509Certificate2 object cmsSigner

signedCms.ComputeSignature(cmsSigner);

Return an array of bytes – the signature

return signedCms.Encode();

2. Verify Signature

Verifiy the encoded SignedCms message and return a Boolean value that specifies whether the
verification was successful.

We need a SignedCms object to decode and verify the byte array (that was returned from the Sign
Message method above)

SignedCms signedCms = new SignedCms();
signedCms.Decode(encodedSignedCms);

With the SignedCms object we now can verify the signature. This statement throws
System.Security.Cryptography.CryptographicException when the signature is not verified. So a try-
catch block is used here and a false is returned if the signature failed the verification.

try{
signedCms.CheckSignature(true);

}catch(System.Security.Cryptography.CryptographicException){… return false;}

For Encryption, the main functions are
1. Encrypt the message

Encrypting message has a similar procedure as signing a message. The major
difference is instead of using Signedcms, we use EnvelopedCms here.

AS2 Server and Client implementation 35

 EnvelopedCms envelopedCms = new EnvelopedCms(contentInfo);

Then we need to formulate a CmsRecipient object that represents information about the
recipient to encrypt the message for. Here we need the recipient’s Public Key the
encrypt the message. The Public Key is stored in the X509Certificate2 object:
recipientCert.

CmsRecipient recip = new CmsRecipient(
 SubjectIdentifierType.IssuerAndSerialNumber,
 recipientCert);

Now with the CmsRecipient created above we can encrypt the message using the
recipient’s Public Key:

envelopedCms.Encrypt(recip);

Return an array of bytes. The encoded EnvelopedCms message contains the
encrypted message and the information about the recipient that the message was
encrypted for.

return envelopedCms.Encode();

2. Decrypt the message

Similar as verifying signatures, we can simply call a method to decrypt the encrypted
data. The recipient’s information is stored in the envelopedCms object already and this
statement will automatically locate the corresponding Private Key to perform the
decryption.

envelopedCms.Decrypt(envelopedCms.RecipientInfos[0]);

Problems & Solutions4.

4.1 The decision of redesigning of the original program
There is an existing version of the AS2 system. The project originally was to understand
the existing system, refine it and add security features on top of it. However a few critical
problems were identified, which lead to the decision of redesigning the system.

One problem of the original AS2 system is that the architecture is not well designed.

Client

Server

MIME

User Interface
Business Logic

Database Access

Database Access
Business Logic

AS2Message

 Figure - original AS2 implementation architecture

As shown above, different layers are mixed together. For example, on client side, the User
Interface code, Business logic code and Database Access code are all mixed together.

Another problem is the connections between components are not clear. For example, on
the server side, the logic of processing received messages suggests that AS2Message
contains MIMEMessage, however, AS2Message class is inside of the MIME folder. Also,
in AS2Message class the MIMEMessage type instance variable is declared but was never
used, which means there is no actual connection between MIMEMessage and
AS2Message class. Further more, AS2Message variables were never used in the
program although many were declared.

In addition, most variables are declared as global variables and the program would not
compile, in fact, the compiler picked up over 100 errors.

Because of these, the decision of redesigning the system was made. The new system
architecture is described in section 4.2.

AS2 Server and Client implementation 36

4.2 Sending different types of messages
Due to the permutation of the variables: Signed, MDN, Encrypted, MDNSigned,
Synchronous MDN, there are many different types of the AS2 message. See
Assumptions—Permutation summary section.

In order to send different types of messages, the AS2Message class was designed to be:

 AS2Message

AS2Message(HttpRequest rs)

static Send(String AS2To, String AS2From, string message,
string uri, bool encryptedMessage, bool signedMessage)

static SendWithSynchMDN(String AS2To, String AS2From,
String message, String receiverUrl, bool encryptedMessage,
bool signedMessage, bool encryptedMDN, bool signedMDN)

static SendWithAsynchMDN(String AS2To, String AS2From,
string message, string receiverUri, string receiptUri, bool
encryptedMessage, bool signedMessage, bool encryptedMDN,
bool signedMDN)

 Instance Variables

 Figure – old send methods

As shown above, there are more than one send methods and all of them are static.
According to this design, the sender does not need to construct any AS2Message object,
instead the Sender can directly call the proper static send method to send the message.

However this design has a few disadvantages:

• The sender has to decide which send method to use and the corresponding
message types of each send method are not defined clearly. This increases
complexity of the system.

• In order to call the send method, a lot of parameters are needed. This increases
complexity and/or inconvenience too.

• The sender does not actually need to use any of the instance variables. Because
the sender passes parameters to the send method. However, the parameters and
the instance variables hold the same data. This means duplication of information.

Because of the considerations above, the class was redesigned to Figure - AS2Message
class diagram. In the new design, the instance variables are fully made use of and there is
only one send method which takes no parameter. The new design resolved the
disadvantages stated above.

AS2 Server and Client implementation 37

4.3 Detach Signature from Message Data and Verify the Separated
Signature

When I was implementing Digital signature, one problem I encountered is that the original message data
is embedded somewhere inside of the Signature. This is not what we want because we want
separated Signature and the message data so that we can put them in separate MIMEPart. After some
research I found out the key to this problem is in the constructor of SignedCms:

 public SignedCms (ContentInfo contentInfo, bool detached)

If the detached state is false (the default), the content that is signed is included in the
CMS/PKCS #7 message along with the signature information. If the detached state is true,
clients that cannot decode S/MIME messages can still see the content of the message if it
is sent separately. This might be useful in an archiving application that archives message
content whether the message sender can be verified for authenticity.

So, if use:

AS2 Server and Client implementation 38

 SignedCms sm = new SignedCms(contentinfo, true);

Then the original message will be automatically detached from the signature.

For example, when I try to sign this string:

“Germany is a country in central Europe and a member of the European Union. Official
Name:: Bundesrepublik Deutschland”

Get the signature:
�¬ MIICXAYJKoZIhvcNAQcCoIICTTCCAkkCAQExCzAJBgUrDgMCGgUAMAsGCSqGSIb

3DQEHAaCCAZIwggGOMIIBOKADAgECAhEA5NA/Du9fokKfi6zibqtLMjANBgkqhkiG9w0
BAQUFADAaMQswCQYDVQQGEwJOWjELMAkGA1UEAxMCZGUwHhcNMDYwODEwM
DAwMDAwWhcNMDcwODA5MjM1OTU5WjAaMQswCQYDVQQGEwJOWjELMAkGA1UE
AxMCZGUwXDANBgkqhkiG9w0BAQEFAANLADBIAkEA5pvNr3CaD9wnJasQ8wxApzMR
k0dqXr0Yl006TTdlMS1uE1FWFAiOLekThMDR36qLIIZh3+tEGFcajD86dFl13wIDAQABo1
kwVzAiBgNVHSMBAQAEGDAWgBRy9EiyonBGYxG1P8/g04299EEtUzAgBgNVHQ4BAQ
AEFgQUcvRIsqJwRmMRtT/P4NONvfRBLVMwDwYDVR0PAQH/BAUDAwCAADANBgkq
hkiG9w0BAQUFAANBAKzvFoiN404mexOQ1ZsrEcCKbaty/L1yNQxg/cSpgpCuskZzGccw
vgem6Kfo1F2e5uKS0U1od9aFWDw42vt8L/cxgZMwgZACAQEwLzAaMQswCQYDVQQG
EwJOWjELMAkGA1UEAxMCZGUCEQDk0D8O71+iQp+LrOJuq0syMAkGBSsOAwIaBQA
wDQYJKoZIhvcNAQEBBQAEQKy8T2Pog2iTC1g44w/hKX5170+YzQcSzJdgHbj4d1/YPG
NaSArfhX5H4m0jgvmXNZvbBUMueMUgKOSLzKkvoJ0=

Problem solved. However, the signature then cannot be verified after the original message
was detached.

From MSDN I found the following segment of code:

// Create a ContentInfo object from the inner content obtained // independently
from encodedMessage.
ContentInfo contentInfo = new ContentInfo(innerContent);
// Create a new, detached SignedCms message.
SignedCms signedCms = new SignedCms(contentInfo, true);
// encodedMessage is the encoded message received from // the sender.
signedCms.Decode(encodedMessage);
// Verify the signature without validating the // certificate.
signedCms.CheckSignature(true);

That was suggested in MSDN. But the problem is the parameter ‘innerContent’ that was used to create
ContentInfo. The only clue it gave is “the inner content obtained independently from
encodedMessage.”.

There is only one constructor for ContentInfo that accepts one parameter and the parameter is a byte
array. So both the encodedMessage and the innerContent are an array of bytes. I tried to use
encodedMessage as the innerContent but did not work. So the question is: Which part of the byte
array ‘encodedMessage’ should be used as the ‘innerContent’ byte array?

MSDN did not mention at all nor gave any link.

I thought of a solution:
Use 2 SignedCms objects. One has the original message attached with the signature and this is used
to verify the signature. The other one has the original message detached and this is used to extract the
signature for later use (create multi-MIME).

I modified the SignMsg() method. Added a Boolean variable ‘detach’ to indicate if we want the returned
byte array have original message in it nor not.

static public byte[] SignMsg(
 bool detach,
 Byte[] msg,
 X509Certificate2 signerCert)

Call the new method twice with detach to be true and false. Get 2 byte arrays:
encodedSignedCmsWithMsg and encodedSignedCmsWithoutMsg.
encodedSignedCmsWithMsg is used to verify the signature.

encodedSignedCmsWithoutMsg is used to wirte to a file called signature.txt. We can use
this to compose multi-MIME.

AS2 Server and Client implementation 39

However this solution is not efficient and confusing. We found another much more robust
solution in the end:

When we create the detached signature, we give the plain text message
in variable "message":

No
The receiver receives the MIME multipart and thus has the message and the signature.
Now, verify the signatu

Th
the
SignedCms object with setting "detached signature", so the receiver does that, too.
Now, the receiver already has the signature which was created using the Encode method.
Well, now we use the Decode method on the same data, i.e. the signature. The
SignedCms has now a link to the original message (in the ContentInfo object) and the
signature (decoded with Decode).

So now CheckSignature() works perfectly with the detached signature.

ContentInfo contentInfo = new ContentInfo(message);
SignedCms signedCms = new SignedCms(contentInfo, true);
byte[] signature = signedCms.Encode();

w we can create a MIME multipart: part 1 – the message data , part 2 – the signature

re

e idea is that it works symmetrically to the creation of the signature: the sender used
 message as contentInfo, so now the receiver does that, too. The sender created a

.4 The problem with IIS Server
The biggest problem we encountered in this project is that security features did not

 can be implemented. This test program does signing, verification,

ContentInfo contentInfo = new ContentInfo(message);
SignedCms signedCms = new SignedCms(contentInfo, true);
signedCms.Decode(signature);
signedCms.CheckSignature(true);

4

function on IIS server.

For the security features we developed a test program to demonstrate how the digital
ignature and encryptions

encryption and decryption all together and everything worked well. We then migrated code
for this part into the AS2 program. It signs and encrypts the AS2 message perfectly but
the AS2Handler cannot verify nor decrypt the received message. In fact, it crashes
whenever the verify message or decrypt message codes are executed.

The exception was thrown:

System.Security.Cryptography.CryptographicException: ASN1 bad tag value met.

The AS2Handler has the same code for the verifying signature and decryption part as we
have in the sample program but it just does not work on the server side. After some
google search we found out lots of complains about this. Seems it has something to do
with this version of IIS server. IIS5.3 is not a completed version and the changes from

AS2 Server and Client implementation 40

IIS5.3 to IIS6.0 are evolutional according to Barry. But the problem is IIS 6.0 is not a
freeware anymore.

Before giving up, we had a last test about IIS and the codes for security features. The
normal procedure is the sender signs and encrypts the message then sends it to the

ceiver. The AS2Handler on the receiver’s IIS server receives the signed and encrypted

ause: IIS did not have the permission to access the certificate store that held
e public and private keys. Certificate stores are normally under different user accounts

ly permission for the
andler correctly. Some more research still needs to be done on this part.

S2 is a protocol for the secure exchange of structured business data using HTTP
e:

using standard MIME structures;
 Authentication and data confidentiality are obtained by using Cryptographic Message

igned MDN responses.

The
earer

and more effective;

• am was integrated into the message system of EDIS for

re
message then it tries to verify the signature and decrypt the message. However in this test
we made the AS2Handler do everything: sign, verify, encrypt, decrypt. This means all the
codes are executed at server side. This is basically putting the test program we developed
before on the IIS server and see if it still works. It failed however. The AS2Handler couldn’t
locate the correct Certificate and couldn’t verify the signature nor decrypt the encrypted
message.

We then conducted some more research and finally with Matthew’s help in AARN we
found the c
th
and programs that do not belong to the same user account don’t have access to the
certificate store. However, IIS is not running under any particular user account, which
means IIS cannot access any certificate store that belongs to any particular user account.
In order to solve this problem, we have to use the root certificate store, which belongs to
the local machine but not any particular user account. Also we have to set the assembly
permission for the handler so that it can access the certificate store.

We stuck at this problem for a few weeks and did not find the cause until the very last
minute. Even so we still have not figured out how to set the assemb
h

5. Conclusion
A
transfer protocol, wher

• The structured business data may be in XML or other structured formats;
• The data is packaged
•

Syntax with S/MIME security body parts; and
• Authenticated acknowledgements make use of multipart/s

 project achieved the following:
• The system architecture of the pre-existing program was redesigned to make it cl

• The basic operations of AS2 data exchange were implemented;
• AS2 security features such as digital signature and encryption were implemented; and

The redesigned progr
Windows.

These results fulfil the project plan.

AS2 Server and Client implementation 41

6. Next Step
Up to now, most AS2 functions/features are implemented except MDN. Currently we only
implemented synchronous MDN without proper structure. So the next step is to construct
proper MDN (both synchronous and asynchronous), send and handle it. This requires a
new MDN class that is similar to AS2Message class in NetLib. We also need a MDN
handler to receive and handle the MDN from the receiver.

7. Acknowledgement
Firstly I have to thank my supervisor Mr Lutteroth, who guided me through this project and
was always there to help and support.

Also thanks to my supervisor Dr. Gerald and Dr. Manoharan and industry mentor Barry for
their support and information provided.

Special thanks to AARN for their remote help and technical support.

8. Bibliography
[1] Barry Dowdeswell and Christof Lutteroth. A Message Exchange Architecture for
Modern E-Commerce. In: Trends in Enterprise Application Architecture, LNCS 3888,
Springer, March 2006.

[2] E.D.I. University online. Introduction to EDI http://www.ediuniversity.com/intermediate/as2.jsp

[3] Barry Dowdeswell. AS2 Overview. Feb, 2006

[4] D. Moberg, Cyclone Commerce and R. Drummond, Drummond Group Inc; “MIME-
Based Secure Peer-to-Peer Business Data Interchange Using HTTP, Applicability
Statement 2 (AS2)”, RFC 4130, July, 2005

[5] David Youd http://www.youdzone.com/signature.html an introduction to Digital
Signatures

AS2 Server and Client implementation 42

http://www.ediuniversity.com/intermediate/as2.jsp
http://www.youdzone.com/signature.html

9. Appendix -- terms

AS2: Applicability Statement 2

EDI: Electronic Data Interchange

EC: Business-to-Business Electronic Commerce

B2B: Business to Business

Receipt: The functional message that is sent from a receiver to a sender to acknowledge
receipt of an EDI/EC interchange. This message may be either synchronous or
asynchronous in nature.

Signed Receipt: A receipt with a digital signature.

Synchronous Receipt: A receipt returned to the sender during the same HTTP session
as the sender's original message.

Asynchronous Receipt: A receipt returned to the sender on a different communication
session than the sender's original message session.

Message Disposition Notification (MDN): The Internet messaging format used to
convey a receipt. This term is used interchangeably with receipt. A MDN is a receipt.

Non-repudiation of receipt (NRR): A "legal event" that occurs when the original sender
of an signed EDI/EC interchange has verified the signed receipt coming back from the
receiver. The receipt contains data identifying the original message for which it is a
receipt, including the message-ID and a cryptographic hash (MIC). The original sender
must retain suitable records providing evidence concerning the message content, its
message-ID, and its hash value. The original sender verifies that the retained hash value
is the same as the digest of the original message, as reported in the signed receipt. NRR
is not considered a technical message, but instead is thought of as an outcome of
possessing relevant evidence.

S/MIME: Security MIME. A format and protocol for adding cryptographic signature and/or
encryption services to Internet MIME messages.

Cryptographic Message Syntax (CMS): An encapsulation syntax used to digitally sign,
digest, authenticate, or encrypt arbitrary messages.

SHA-1:A secure, one-way hash algorithm used in conjunction with digital signature. This
is the recommended algorithm for AS2.

MD5: A secure, one-way hash algorithm used in conjunction with digital signature. This
algorithm is allowed in AS2.

MIC: The message integrity check (MIC), also called the message digest, is the digest
output of the hash algorithm used by the digital signature. The digital signature is
computed over the MIC.

AS2 Server and Client implementation 43

User Agent (UA): The application that handles and processes the AS2 request.

AS2 Server and Client implementation 44

	1. Background
	1.1 Who is AARN
	

	1.2 Brief Introduction to EDIS E-commerce Trading System
	1.3 Initiative for AARN
	
	2. Introduction to AS2
	2.1.1 The Secure Transmission Loop
	
	2.2 Assumptions
	2.2.1 EDI/EC Process Assumptions
	2.2.2 Flexibility Assumptions
	2.2.3 Permutation Summary
	2.3.1 Headers
	2.3.2 Message body

	2.4 HTTP considerations
	2.4.1 HTTP Response Status Codes
	2.4.2 HTTP Error Recovery

	2.5 Important Security Features of AS2
	2.5.1 Public Key Cryptography and Encryption
	 2.5.2 Public Key Cryptography and Digital Signature
	
	
	
	
	
	
	
	2.5.3 Digital Certificate
	2.5.4 Certificate Authority of AS2
	2.5.5 In the process of one AS2 message exchange:

	2.6 Structure and Processing of an MDN Message
	2.6.1 Required supports
	2.6.2 Usage of the signed receipt
	2.6.3 Processes on receiving an encrypted message
	2.6.4 Usage of Signed MDN for the Sender of the EDI Interchange
	2.6.5 Synchronous and Asynchronous MDN

	3. The AS2 Project
	3.1 Project management
	 3.2 System Architecture
	
	3.2.1 NetLib
	3.2.2 AS2 Sender
	3.2.3 AS2 Handler
	3.2.4 Core Classes

	3.3 Implementation of Security features

	
	4. Problems & Solutions
	4.1 The decision of redesigning of the original program
	4.2 Sending different types of messages
	4.3 Detach Signature from Message Data and Verify the Separated Signature
	4.4 The problem with IIS Server

	5. Conclusion
	6. Next Step
	7. Acknowledgement
	8. Bibliography
	9. Appendix -- terms

